Detecting Time Correlations in Time-Series Data Streams
نویسنده
چکیده
In this paper, a novel method for analyzing time-series data and extracting time-correlations among multiple time-series data streams is described. The time-correlations tell us the relationships and dependencies among time-series data streams. Reusable time-correlation rules can be fed into various analysis tools, such as forecasting or simulation tools, for further analysis. Statistical techniques and aggregation functions are applied in order to reduce the search space. The method proposed in this paper can be used for detecting time-correlations both between a pair of time-series data streams, and among multiple time-series data streams. The generated rules tell us how the changes in the values of one set of time-series data streams influence the values in another set of time-series data streams. Those rules can be stored digitally and fed into various data analysis tools, such as simulation, forecasting, impact analysis, etc., for further analysis of the data.
منابع مشابه
On the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملDimensionality Reduction and Filtering on Time Series Sensor Streams
This chapter surveys fundamental tools for dimensionality reduction and filtering of time series streams, illustrating what it takes to apply them efficiently and effectively to numerous problems. In particular, we show how least-squares based techniques (auto-regression and principal component analysis) can be successfully used to discover correlations both across streams, as well as across ti...
متن کاملElements of nonlinear analysis of information streams
This review considers methods of nonlinear dynamics to apply for analysis of time series corresponding to information streams on the Internet. In the main, these methods are based on correlation, fractal, multifractal, wavelet, and Fourier analysis. The article is dedicated to a detailed description of these approaches and interconnections among them. The methods and corresponding algorithms pr...
متن کاملStatStream: Statistical Monitoring of Thousands of Data Streams in Real Time
Consider the problem of monitoring tens of thousands of time series data streams in an online fashion and making decisions based on them. In addition to single stream statistics such as average and standard deviation, we also want to nd high correlations among all pairs of streams. A stock market trader might use such a tool to spot arbitrage opportunities. This paper proposes eÆcient methods f...
متن کاملCypress: Managing Massive Time Series Streams with Multi-Scale Compressed Trickles
We present Cypress, a novel framework to archive and query massive time series streams such as those generated by sensor networks, data centers, and scientific computing. Cypress applies multi-scale analysis to decompose time series and to obtain sparse representations in various domains (e.g. frequency domain and time domain). Relying on the sparsity, the time series streams can be archived wi...
متن کامل